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Abstract—Energy efficiency is a significant requirement of resource management and design optimization in information networks. In
this work, we propose an iterative fractional programming framework embedded with a distributed primal-dual extra-gradient projection
algorithm, which addresses a wide class of the energy-efficiency optimization problems in wireless ad hoc networks with full-duplex
radios and multi-packet reception capability. Specifically, we propose a model convexification mechanism by joining an affine
transformation and an exponential transformation into the nonlinear fractional programming, which enables us to deal with the
challenge arising from the complexity and non-convex structure of the original problem. With the model convexification, we can map
the non-convex power control space into a convex space and equivalently derive a sequence of convex subproblems, which relaxes the
convexity assumption widely adopted in the existing literature. We further propose a distributed primal-dual algorithm based on
extra-gradient projection to solve the convex subproblem at each iteration of the fractional programming. The convergence of the
proposed iterative fractional programming and the distributed optimization method is theoretically proven. Numerical results also verify
the proposed method and demonstrate its superior performance over other representative distributed and centralized schemes in
terms of achieving global energy efficiency.
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1 INTRODUCTION

NOWADAYS, many existing and envisioned cyber-
physical systems, such as connected and autonomous

vehicle platoons [1], cooperative unmanned aerial vehi-
cles (UAVs) [2], [3], energy-harvesting Internet of Things
(IoT) [4], and many other multi-hop networks [5], rely on
well-established wireless ad hoc networks to enable their
applications and services. Besides, to enhance the perfor-
mance of decoding or demodulating signals from multi-
ple sources simultaneously, multi-packet reception (MPR)
protocols have been combined with full-duplex radios for
network nodes [3], [6]. These protocols can be realized by us-
ing some physical-layer self-interference cancellation tech-
nologies such as radio frequency (RF) interference cancel-
lation, digital cancellation, and antenna cancellation. From
many successful application domains, such as unmanned
aerial vehicle (UAV) networks [3], wireless ad hoc or auto-
nomic networks [7], [8], and wireless multimedia networks
[9], [10], it is witnessed that the full-duplex radios and
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multi-packet reception capability can bring great benefit
to communication and networking systems in terms of
system-level performance improvement. Hence, this tech-
nical paradigm has received much research attention. How-
ever, the introduction of full-duplex radios and multi-packet
reception capability into a general wireless ad hoc network
inevitably increases the system complexity due to the cou-
pling power interferences from multiple concurrent signal
transmitters. This integration poses an important challenge
for system design and optimization. In particular, the impact
of concurrent interferences on the quality of received signal
cannot be fully ignored, even when the network nodes are
equipped with advanced self-interference technologies [3],
[7], [8].

Energy efficiency is a fundamental and significant re-
quirement of wireless ad hoc networks with full-duplex
radios and multi-packet reception capability. Such a system
metric can play a critical role in affecting a broad range
of communication and computing applications since net-
work nodes are usually energy resource-limited [4], [11],
[12]. Specifically, the energy-efficiency optimization objec-
tive is formulated as a ratio of the network-wide through-
put or data rate over the network power consumption.
It is concerned with the performance of the information
transmission capacity when a unit of energy is consumed.
Hence, a fractional form is used to characterize the energy-
efficiency metric [13]–[15]. Its numerator and denominator
are inherently two contradictory quantities. In addition, the
constraints involved in the energy-efficiency optimization
of a wireless ad hoc network usually impose restrictions on
maximum power consumption or concurrent physical-layer



2

interferences.
In mathematics, a general energy-efficiency optimiza-

tion problem falls into a class of nonlinear constrained
optimization (NCO) that can be appropriately solved by
using many existing nonlinear optimization algorithms and
software in centralized computation, such as interior-point
methods, augmented Lagrangian methods, and gradient
projection methods [16], [17]. However, in many practical
situations, neither the convexity1 nor the structural separa-
bility2 can be well satisfied by the energy-efficiency opti-
mization problem. In particular, when we take into account
full-duplex radios and multi-packet reception capability, the
coupling power interferences from multiple transmitters
cannot be neglected. The coupling interference effect is usu-
ally captured by the well-known metric, i.e., the signal-to-
interference-plus-noise ratio (SINR) on the concurrent chan-
nel. As shown in [18], SINR-based utility functions or their
linear combinations are neither convex nor concave in the
power feasible region due to the impact of the coupling in-
terferences. The presence of non-convexity can make current
convex optimization methods (like interior-point methods,
sequential quadratic programming, and semidefinite cone
programming [19], [20]) less effective or even infeasible in
solving a global optimal and feasible point [21]. It remains
an open issue to effectively tackle the nonlinear constrained
energy-efficiency optimization problem in the presence of
non-convex SINR-based utility functions.

In this work, we are motivated to establish a model
convexification mechanism for mapping the non-convex
system model into a convex form. We join an affine transfor-
mation and an exponential transformation into a fractional
programming paradigm. Leveraging the model transforma-
tion and convexification, we propose a novel distributed
optimization-enabled fractional programming framework
for the global energy-efficiency maximization of a wireless
ad hoc network with multi-packet reception capability. The
proposed method provides a deep insight into how to re-
move the barrier arising from the non-convexity of energy-
efficiency optimization in the form of fractional program-
ming. In this way, the proposed framework enables legacy
convex optimization techniques to come into play. The main
contributions of this work are summarized as follows:

i) We propose an affine transformation for calculating the
weighted sum-rate of a wireless ad hoc network with multi-
packet reception capability. Using the affine transformation,
we show that the network throughput utility function can
be equivalently transformed into a simpler weighed-sum
structure. This facilitates model convexification.

ii) Based on the transformed utility function, we extend
Dinkelbach’s method to establish a nonlinear constrained
fractional programming framework to address the energy-

1. Convexity is a mathematical concept defined from the perspective
of geometry. A convex optimization model requires that both its opti-
mization objective function and constraint functions are convex.

2. The structural separability of a constrained optimization model
means that its objective function and constraint functions are separable
across multiple individuals’ decision variables. When the objective and
constraint functions of the model are separable, they can be naturally
decomposed into a sequence of subproblems, each of which can be
solved by a single individual. Thus, the overall model can be addressed
in a distributed manner, and the solving algorithm can be well suited
for distributed implementation.

efficiency optimization problem. Even though this model
does not fall into the category of convex-concave fractional
programming, we prove that the framework can still solve
the non-convex problem under the condition that the fea-
sibility of solving a sequence of non-convex nonlinear con-
strained subproblems and the global optimality of solutions
for those subproblems are guaranteed.

iii) To address a sequence of non-convex subproblems in
the iterative framework, we propose an exponential trans-
formation to convert the non-convex optimization structure
into the convex structure. Based on the convexification, we
propose a distributed primal-dual extra-gradient projection
method that can handle the structural inseparability for
practical distributed implementation, and finally prove its
global convergence to an optimal solution.

The rest of this paper is organized as follows. Section
2 details a review on related works. Section 3 develops
the system model and proposes an affine transformation.
Section 4 extends the Dinkelbach’s method and proposes
a fractional programming framework. In Section 5, we
propose the convexification mechanism and a distributed
algorithm. Section 6 provides numerical results to validate
the performance of the proposed method. Finally, Section 7
concludes this work and remarks future research directions.

2 RELATED WORKS

Admittedly, there exists a voluminous body of literature
that aims at the optimal energy efficiency of communication
systems ranging from various wireless ad hoc networks
to cellular networks. Specifically, since the optimization
objective is usually expressed as a fractional utility func-
tion, the theory of fractional programming has been widely
utilized for inspiring the development of energy-efficiency
optimization algorithms. Dinkelbach’s method is one of the
most famous fractional programming schemes. It had been
originally proposed for solving a class of convex fractional
programming problems (sometimes termed convex-concave
problems), in which the numerator function is required to
meet the convexity and the denominator should be con-
cave concerning decision variables [22], [23]. Inspired by
Dinkelbach’s method or its variants, many researchers have
been currently engaged in developing innovative design
paradigms to address the energy-efficiency optimization
challenges in different communication systems [15]. For
example, [24] formulates the objective function as the ratio
of the overall spectral efficiency over the total power con-
sumption in a multi-user-multi-relay orthogonal frequency
division multiple access (OFDMA) cellular network. Since
their model does not incorporate the coupling interference
structure, the problem can be simplified as quasi-concave
fractional programming in the maximization form [24], and
can be solved based on Dinkelbach’s method. In [13], [14],
Shen et al. have proposed a quadratic transformation similar
to the classical Dinkelbach’s transform. Their transformation
is promising to handle multi-ratio fractional programming
problems but it requires additional constraints that the ob-
jective function value must stay the same [13], [14]. Besides,
the fractional programming method with the quadratic
transformation depends on the concave-convex assumption
to solve sum-of-functions-of-ratio problems (see Theorems
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3 and 4 in [13]). Another work [25] has proposed a matrix
fractional programming method based on the quadratic
transformation and applied it to solve the weighted sum
of log utilities in a device-to-device (D2D) communication
system. Due to the non-convexity of the model, an approx-
imate model of the original problem needs to be properly
chosen and solved, and only local convergence can be guar-
anteed (see Theorem 6 in [25]). In addition, the work [15]
provides a comprehensive review of various classes of rep-
resentative fractional problems including linear fractional
problems, concave-convex fractional problems, and max-
min fractional problems. Conventional convex fractional
programming algorithms are also presented for energy-
efficiency designs of different wireless networks [15]. It is
observed from the above existing works and those therein
that the convexity assumption plays a key role in enabling
a wide range of fractional programming algorithms.

Another research focus related to the power control of
wireless ad hoc networks is on distributed implementation.
From the perspective of practical deployment, distributed
computation is more appealing and promising than central-
ized computation which fully relies on a centralized entity.
In particular, when the computing resource of each node
in a network is limited, a distributed paradigm can reduce
the computational burden undertaken by each node and a
power optimization problem can be solved in a multi-node
cooperative manner. Besides, in a wireless ad hoc network,
every networking node, i.e., a computation agent, may not
be able to access other nodes’ individual utilities or deci-
sion constraint conditions, but they can only communicate
the values of their decision variables locally [26]–[28]. In
such situation, we need to design a distributed computa-
tion framework. Indeed, extensive efforts have been ded-
icated to investigating distributed optimization in various
application contexts including communication, optimiza-
tion, and control. Many well-known distributed algorithms,
as well as their variants, have already been developed
such as sub-gradient projection-based methods [29]–[33],
primal-dual-based or dual-based methods [28], [34]–[41],
diffusion adaptation-based methods [42]–[44], population
game dynamics-based methods [45], [46]. However, most
of those aforementioned methods, for instance, the prior
works [28], [30]–[36], [38]–[41] and the references therein,
originally aimed at solving distributed convex or concave
optimization. These existing studies heavily depend on
the convexity or concavity assumption on their problem
formulation (i.e., on both the objective function and the
constraints) [47]. Additionally, it can also be observed that
some distributed algorithms only deal with unconstrained
optimization problems like the works [29], [42]–[44] or focus
on the problems only with linear inequalities [38], [46].
Differently, the work [37] has proposed an approximate dual
sub-gradient algorithm that is effective to solve a class of
non-convex distributed constrained optimization problems.
Nonetheless, to guarantee their dual approach to converge,
[37] adds a new assumption, termed the singleton dual
optimal solution set, that the dual limit must have a single
optimal solution in its feasible region.

It is also worth pointing out that the Lagrangian dual
relaxation-based approach is a popular way to solve non-
convex constrained optimization problems [16], which has

widely spawned different classes of convex optimization
algorithms as shown in the aforementioned literature and
therein. Unfortunately, when an energy-efficiency optimiza-
tion problem of a wireless ad hoc network, subject to both
individual power constraints and coupling interference con-
straints, cannot meet the mathematical convexity, convex
optimization techniques proposed in the prior works cannot
be applied directly. Due to the existence of a positive duality
gap, the Lagrangian dual formulation is in general not
equivalent to its primal non-convex problem [21], and only
local convergence is guaranteed by primal-dual approaches.

To efficiently solve a non-convex optimization problem,
a key idea is to equivalently transform the non-convex
problem to a convex formulation by a proper model con-
vexification. Much literature such as [5], [48]–[53] has shown
that the natural exponential function can be used for devel-
opment of such a transformation. For instance, early works
[48], [49] have utilized the exponential transformation to
uncover the hidden convexity or hidden concavity of a class
of utility functions in feasible signal-to-interference ratio
(SIR) regions. This idea motivates the convex optimization-
based power control method for CDMA systems [50]. In
existing works [5], [51]–[53], the exponential transformation
has also been used for converting a non-convex power con-
trol problem into a convex problem in the form of geometric
programming that aims at maximizing an objective function
of network-wide SIR or minimizing an objective function
of total power consumption in cellular networks. In fact,
in an earlier work [54], the researchers studied the appli-
cation of log-convexity in convex geometric programming.
In mathematics, the exponential function has a powerful
property, i.e., the log-convexity, which can be leveraged for
model convexification. This mathematical technique is also
called the log-convex transformation. However, the non-
convex problem considered in this work is quite different
from the above geometric programming problems, since its
objective is in the fractional form where the numerator and
denominator are two contradictory metrics. The existing
exponential transformation technique cannot be directly
applied in the non-convex energy-efficiency optimization.

Based on the above observations, we differentiate our-
selves from the previous literature by relaxing the convexity
assumption in system modeling in this work. Specifically,
we propose an affine transformation and combine it with an
exponential transformation to convert a constrained non-
convex energy-efficiency optimization problem into a se-
quence of constrained convex optimization sub-problems.
We then extend the idea of the original Dinkelbach method-
ology and propose a distributed primal-dual method based
on an extra-gradient iteration mechanism for solving these
convex sub-problems. This results in an iterative optimiza-
tion framework, which guarantees globally-optimal conver-
gence despite the non-convexity in the original problem.
In summary, our transformation and optimization method
provides a better understanding of how general fractional
programming can benefit from the proposed model convex-
ification. It can enrich current non-convex energy-efficiency
optimization methodological frameworks and motivate the
development of novel algorithms in other related fields.
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Fig. 1. An exemplary application scenario in which a wireless ad hoc
network with full-duplex radios and MPR capability can be realized
based on some existing token-based medium access control (MAC)
schemes such as [3], [10]. In the MPR scenario, the coupling wireless
interferences from transmitters and their self-interferences cannot be
neglected.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless ad hoc network where each node
can adopt physical-layer self-interference cancellation tech-
nologies to realize full-duplex radio and has a code-division
multiple-access (CDMA) transceiver capable of MPR capa-
bility [3], [7]–[10]. Similar to the existing study like [3],
we focus on the scenario consisting of multiple one-hop
communication nodes in close proximity, in which one node
needs to receive data from several other nodes and this node
also has a potential receiver in its neighborhood. It should
be remarked that such a paradigm is quite general to cover
many real application scenarios such as cluster-based wire-
less sensor networks. In wireless sensor networks composed
of multiple one-hop clusters, a single head of each cluster
needs to collect data from multiple sensors within the same
cluster via one-hop communication and then a global master
node also needs to receive information from different cluster
heads. Besides, it is noted that, even though our system
model presented here deals with a one-hop communication
network, the specific application scenario does not alter our
methodology and our proposed scheme can also be used
in multi-hop routing scenarios. That is, our scheme can be
integrated with many existing routing protocols and media
access control (MAC) schemes like the token-based MAC [3]
to support multi-hop routing applications. The fact is that
the multi-hop routing procedure can usually be divided into

TABLE 1
Main Symbols and Definitions

Symbol Value
N set of network nodes, where N , {1, 2, · · · , N}
p column power vector, where p , [p1, p2, · · · , pN ]T

P global feasible power region
ψi self-interference cancellation factor for node i
σ2
i average background noise power for node i
Ii(p) physical-layer interference function with i
gi channel gain for node i
G diagonal matrix composed of channel gains
vi auxiliary column vector for affine transformation
ei unit column vector whose i-th element is 1
α SINR threshold for successful packet capture
ωi normalized pre-allocated bandwidth
fi(p) data transmission rate for node i’s link
F (p) network-wide weighted-sum rate
Faffine(x) affine transformation function of column vector x
F̃ (x) network throughput based on affine transformation
θ(p) cost-type energy-efficiency metric
h(θ) objective function with Dinkelbach’s transformation
M2(θ) subproblem model with Dinkelbach’s transformation
M3(θ) transformed subproblem model
FM2 (x,y) objective function ofM2(θ)

φ(x) exponential transformation on x
s counterpart of transformed x

S global feasible region of column vector s
φ(s) transformation on column vector s
ϕi(φ(s)) SINR constraint after transformation for node i
ϕ(s) column vector of transformed SINR constraints
J(s) objective function ofM3(θ)

λ column vector of Lagrangian multipliers
U box-type feasible set of Lagrangian multipliers
L(s,λ) Lagrangian function ofM3(θ)

G(s,λ) primal-dual gradient function
L Lipschitz constant for gradient of J(s)
LG Lipschitz constant for G(s,λ)

a series of one-hop communications and thus our scheme
can come into play in each one-hop communication process.
To be specific, we define the number of the nodes in the
wireless ad hoc network by N , and the set of the nodes as
N , {1, 2, · · · , N}. For any node i ∈ N , its transmission
power is denoted by pi which is assumed to be ranged from
pi,min to pi,max, i.e., pi ∈ [pi,min, pi,max]. The channel gain
for any node i ∈ N is denoted by gi and the average back-
ground noise power of the node i is assumed to be σ2

i . Ac-
cordingly, we let the collection of transmission power levels
as a column vector p, i.e., p = [p1, p2, · · · , pN ]

T ∈ P where
P = [p1,min, p1,max]×[p2,min, p2,max]×· · ·×[pN,min, pN,max].
The main mathematical symbols and their physical mean-
ings are also summarized in Table 1.

As shown in Fig. 1, we consider an exemplary applica-
tion scenario where a specific node, for instance, the node
N , would like to receive data packets transmitted from the
otherN−1 nodes, i.e., from {1, 2, · · · , N − 1}, in a time slot,
and simultaneously the node N can also transmit its data to
one of the remainingN−1 nodes as its receiver, for instance,
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the node N − 1. The self-interference cancellation effect for
the node N is characterized by a coefficient ψN . According
to the current literature [3], each node’s MPR capability
can be realized using the CDMA technique, and the MAC
implementation is based on a token passing-based scheme.
Specifically, a MAC token containing a code list is succes-
sively passed from one node to another in the ring. The code
list carries a group of codes, i.e., the codes of each node
in the ring to receive data packets. In general, the codes,
usually called spreading codes, are orthogonal to each other.
A transmitter will take the code of its corresponding receiver
from the code list in the token when it holds the token
and then immediately pass it to the next node in the ring.
Multiple nodes with data to send can modulate their base-
band signals with different orthogonal spreading codes on
the same carrier, meanwhile avoiding serious interferences
between their signals. Conversely, when a node employing a
CDMA transceiver receives signals from multiple transmit-
ters, it can use a matched filter to extract its targeted signal,
as these concurrent signals have different orthogonal codes.
In Fig. 1, each node i, i = 1, 2, . . . , N−1, will select the same
spreading code, i.e., the code of the node N , from the code
list in the MAC token successively passed to themselves,
since they have data to send to the same destination, i.e., the
nodeN . At this point, the nodes ranging from 1 toN−1 will
cause interferences on the reception of the node N . Besides,
for the node N with data to send to the node N − 1, it will
select the code of the node N − 1 from the code list in the
token. Due to the orthogonality of the codes corresponding
to the nodes N − 1 and N , the nodes i = 1, 2, . . . , N − 1
concurrently sending data packets to the node N will not
incur severe interferences on the reception of the nodeN−1.
Therefore, we present different interference functions on
the reception of the nodes N − 1 and N , respectively. The
interference functions are detailed in two different cases as
follows3:

(1) For the transmission link from the nodeN to the node
N − 1, the total interference at the receiver N − 1 is

IN (p) = ψN−1pN−1 + σ2
N−1. (1)

(2) For the transmission from any node i ∈ N\{N} to
N , the interference function associated with i is

Ii(p) = σ2
N + ψNpN +

1

N

N−1∑
k=1,k 6=i

gkpk, (2)

where N is also the spreading factor.
For simplicity, based on (1) and (2), we can re-arrange

the interference function associated with any node i ∈ N as
a unified linear form that couples the power controls of all
the nodes in the network:

Ii(p) = v0,i + vT
i Gp (3)

where vi = [v1,i, v2,i, · · · , vN,i]T and v0,i = σ2
N−1 for i =

N while v0,i = σ2
N for all i ∈ N\{N}. When i = N , in

3. For notation simplicity, we use an interference function for each
receiver to lump the total interference effects on its reception. The
interference function incorporates the interference incurred by the noise
power, the receiver’s self-interference, and the potential interferences
of other nodes with concurrent transmissions. The term “interference”
indicates not only the self-interference and concurrent interferences but
also the noise impact.

the vector vN , vN−1,N = ψN−1

gN−1
while vl,N = 0 for all l ∈

N\{N − 1}. When i ∈ N\{N}, in the vector vi, vN,i = ψN

gN
,

vl,i = 1
N for all l ∈ N\{i,N}, while vi,i = 0. G is a diagonal

matrix, i.e., the gain matrix G = diag {g1, g2, · · · , gN}. Ii(p)
is also called a coupling linear interference function.

Given a signal to interference plus noise ratio (SINR)
threshold α > 0, the signal can be correctly received over a
transmission link from a transmitter i ∈ N when the SINR
associated with this link is greater than the given threshold
α [3], [7], [55], [56], i.e., satisfying the following inequality

SINRi =
gipi
Ii(p)

≥ α. (4)

Combining (3) and (4) then yields a group of inequalities

αv0,i + αvT
i Gp− gipi ≤ 0, ∀i ∈ N . (5)

Now, we denote a unit column vector by ei, where the i-
th component is equal to 1 while the other components are
zero, i.e., [ei]i = 1 while [ei]l = 0 for all l ∈ N\{i}. We
rearrange (5) as follows

αv0,i + (αvi − ei)
T
Gp ≤ 0, ∀i ∈ N . (6)

Referring to the channel capacity of information trans-
mission in the Shannon’s sense, we derive the rate of the
transmission link associated with node i and given its pre-
allocated bandwidth ωi > 0 as follows

fi(p) = ωi log2

(
1 +

gipi
Ii(p)

)
, ∀i ∈ N . (7)

Following (7), we can formulate the overall throughput util-
ity of the wireless ad hoc network with full-duplex radios
and MPR capability as the following weighted sum-rate

F (p) =
N∑
i=1

fi(p) =
N∑
i=1

ωi log2

(
1 +

gipi
Ii(p)

)

=
N∑
i=1

ωi log2

(
1 +

gipi
v0,i + vT

i Gp

)
.

(8)

Remark: We have formulated the system model that de-
scribes the weighted sum-rate of a wireless ad hoc network
with a specific transmission-pair and interference topology
as shown in Fig. 1. The network system and its variants
have been widely investigated in the current literature such
as [3], [7]–[10], and the system model can be applied to a
wide variety of application scenarios, such as UAV-based
wireless networks [3]. Even though our system modeling
is based on a specific application scenario as illustrated in
Fig. 1, the specific application scenario does not alter our
methodology. The system modeling approach and the pro-
posed optimization method can be adapted to other specific
scenarios such as wireless sensor networks and vehicular ad
hoc networks. It is also noted that we have modeled the fun-
damental communication requirement of the network nodes
from the physical-layer perspective, using a general SINR
threshold reception model (4) that is widely used in the
current literature [3], [7], [55], [56]. It is because we consider
full-duplex radios and MPR capability in the network that
the physical-layer interferences caused by the concurrent
data transmissions of multiple nodes cannot be neglected.
Thus, we focus on the SINR-based channel capacity model.
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This physical-layer model enables us to characterize the
channel capacity concerning concurrent nodes’ interferences
and thus is widely adopted in the recent literature.

Remark: In Fig. 1, the network nodes with the CDMA
implementation and the token passing-based MAC scheme
are able to get the knowledge of the model parameters,
e.g., the channel gains, and update the parameters for
transmission optimization. Specifically, the token can also
carry a channel gain list consisting of the channel gains
or other channel state information (CSI) [3]. When a node
receives the token and takes out its targeted code from
the code list of the token, it will also update the channel
gains in the channel gain list of the token according to its
own channel measurements (i.e., the signal samples-based
statistics). After that, the node will immediately pass the
token to the next node in the ring, and the next token holder
will repeat the similar procedure. In this way, the channel
gains or other CSI parameters in the passed token can also
be updated periodically and will be used for the nodes’
transmission optimization.

Remark: We further highlight that the token passing in
the ring is operated in the common control channel rather
than in the data channel as in Fig. 1. The functionality
of the common channel and the data channel is different.
Concurrent data transmissions occur in the data channels.
The common channel is usually used to broadcast some
MAC messages such as tokens and beacons [3], [57], so
as to enable nodes to find the network and establish the
connection. For example, in [57], a vehicular node uses the
common channel to request to join a cluster-based vehicular
network and the data channel to transmit data. A cluster
head will decide whether the requesting node is admitted to
join the network or not. Once the requesting node is allowed
to access the channel, it is added to the service list or the
token list. In [3], [57], a transmission scheduling scheme is
determined based on the information about the set of nodes
accessing the same channel. Similar to the literature, we
can construct the set of nodes that would like to send data
according to the information on channel access before the
nodes send data in the data channel.

3.1 Affine Transformation of Throughput Utility

When looking into (8) carefully, we are motivated to propose
an affine transformation to convert the throughput utility
into a simpler structure so as to facilitate the optimization
design. Specifically, given a positive parameter ai for each
i ∈ N , there must exist a real number xi such that

aixi = gipi + (v0,i + vT
i Gp), ∀i ∈ N . (9)

Let A = diag {a1, a2, · · · , aN} and x = [x1, x2, · · · , xN ]
T,

V = [v1,v2, · · · ,vN ], v0 = [v0,1, v0,2, · · · , v0,N ]
T, and B =

(I + V)
T where I is a N × N unit matrix. We derive from

(9) the following relationship

Ax− v0 = BGp. (10)

Therefore, we can establish an affine transformation from x
to p by Faffine : x 7→ p, i.e.,

p = Faffine(x) = G−1B−1Ax−G−1B−1v0. (11)

This affine transformation Faffine establishes a one-to-one
mapping relationship between the decision variables for
power control, p, and another set of decision variables, x.
This one-to-one mapping function provided by the affine
transformation is bijective, indicating that we can uniquely
determine the set of power decision variables p by deter-
mining the new decision variables x. At this point, we can
substitute the power decision variables, p, with the new de-
cision variables, x, to transform an original EE optimization
problem with respect to p into another equivalent one with
respect to x. Once we obtain optimal x from the transformed
problem, we can also determine optimal p immediately.

Moreover, letting c0,i = v0,i − vT
i B
−1v0, bT

i = vT
i B
−1,

and Ĩi(x) = c0,i + bT
i Ax for all i ∈ N , we have

Ĩi(x) = c0,i + bT
i Ax = v0,i + vT

i Gp = Ii(p). (12)

Combining (12) and (9), we obtain
aixi

Ĩi(x)
=

gipi
Ii(p)

+ 1, ∀i ∈ N . (13)

Thus, the network throughput (8) can be rewritten as

F̃ (x) =
N∑
i=1

f̃i(x) =
N∑
i=1

ωi log2

(
aixi

Ĩi(x)

)
. (14)

In addition, we let pmin = [p1,min, p2,min, · · · , pN,min]
T

and pmax = [p1,max, p2,max, · · · , pN,max]
T. By using (10), the

bound constraint pmin ≤ p ≤ pmax is equivalent to the
following bound constraint on x

A−1(BGpmin + v0) ≤ x ≤ A−1(BGpmax + v0), (15)

and the linear inequality (6) is also equivalent to

(α+ 1)c0,i + ((α+ 1)bi − ei)
T
Ax ≤ 0, ∀i ∈ N . (16)

Remark: With the proposed affine transformation Faffine,
we can rearrange the transmission data rate in the form of
log2

(
aixi

Ĩi(x)

)
rather than log2

(
1 + gipi

Ii(p)

)
. The mathematical

structure and property of the bound constraints and the
linear inequalities are not changed under the affine trans-
formation. The proposed affine transformation is beneficial
to reduce the modeling complexity and, more importantly,
makes the convexification transformation of a wide class of
energy-efficiency optimization model possible, which will
be shown in the following sections.

3.2 Non-convex Energy-Efficiency Optimization Model
In general, the energy-efficiency optimization problem of
a wireless ad hoc network in the presence of concurrent
wireless interferences can be modeled as

M0 : min
p

: θ(p) =

∑N
i=1 pi∑N

i=1 ωi log2

(
1 + gipi

Ii(p)

)
s.t.

{
αv0,i + (αvi − ei)

T
Gp ≤ 0, ∀i ∈ N ;

p ∈ P.

(17)

In M0, θ(p) denotes the energy consumption of the net-
work to achieve per unit information transmission, which is
expected to be minimized as much as possible to achieve
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a high energy efficiency. The linear inequality constraint
indicates the QoS-related requirement on the individual
link SINR, and the bound constraint represents the actual
physical restriction on the transmission power of each node.

With the proposed affine transformation in Subsection
3.1, we can equivalently convertM0 into another form as

M1 : min
x

: θ(x) =

∑N
i=1 (Cixi +Di)∑N

i=1 ωi log2

(
aixi

Ĩi(x)

)
s.t.


(α+ 1)c0,i + ((α+ 1)bi − ei)

T
Ax ≤ 0,

∀i ∈ N ;

x ∈ X .

(18)

where X represents the feasible solution set of the bound
constraints on x as shown in (15). The coefficients C =
col{Ci, i ∈ N} and D = col{Di, i ∈ N} are determined
by the affine transformation (11), i.e.,{

C = AT
(
G−1B−1

)T
1

D = −vT
0

(
G−1B−1

)T
1.

(19)

where 1 is the N × 1 column vector all of whose elements
are identical to 1.

From (17) and (19), it can be seen that both the original
model and the resulting model after the affine transforma-
tion have the similar mathematical structure. To simplify
notations, we use the set Q to denote the feasible region of
the solution x for the modelM1 in the following sections.

Remark: M1 is a nonlinear and nonconvex fractional
programming problem and does not fall into the typical
class of convex-concave fractional programming problems
due to the non-concavity of its objective function. In general,
it is difficult to directly solve a globally optimal solution
to this problem by using conventional convex optimization
methods. It is also noted that traditional Dinkelbach’s meth-
ods depending on a strong convexity assumption may fail
in solving such a non-convex model.

Remark: In the above model, we mainly focus on the
power consumption of network communications. In reality,
the power consumption of each node’s circuit also con-
tributes to the total energy consumption. Thus, the circuit
power consumption can also be incorporated to develop
a more complicated energy-efficiency optimization model.
Nevertheless, this will require a precise model that can
characterize the functional relationship between the circuit
power consumption and some complicated factors such as
the transmission power, the communication rate, and the
hardware-specific conditions. It is meaningful to model the
circuit power consumption and integrate it with the energy
efficiency optimization, which is left as our future work.

4 ITERATIVE FRACTIONAL PROGRAMMING

Dinkelbach’s method had been originally proposed for
solving a class of convex-concave fractional programming
problems, which is widely applied in many other fields
due to its low complexity. The advantage of Dinkelbach’s
method is that it does not need to introduce additional
constraints. Therefore, we extend Dinkelbach’s method to
develop an iterative algorithmic framework in our targeted
context. More importantly, we will show that once the

feasibility and global optimality of solutions to all the non-
convex optimization sub-problems can be guaranteed, the
iterative fractional programming is applicable in terms of
global convergence.

To tackle M1, we introduce an additional auxiliary
variable θ ∈ R that is used to iteratively approach the
optimal function value of M1, i.e., the optimal objective
value denoted by θ∗. Specifically, based on Dinkelbach’s
transformation, we can solve M1 by equivalently solving
a sequence of the following optimization sub-problems,
denoted byM2(θ), i.e.,

M2(θ) : min
x

:
N∑
i=1

(Cixi +Di)− θ
[
N∑
i=1

ωi log2

(
aixi

Ĩi(x)

)]

s.t.


(α+ 1)c0,i + ((α+ 1)bi − ei)

T
Ax ≤ 0,

∀i ∈ N ;

x ∈ X .
(20)

in which the auxiliary variable θ is treated as a fixed param-
eter. Then, θ can be iteratively updated by

θ[k + 1] =

∑N
i=1 (Cix

∗
i [k] +Di)∑N

i=1 ωi log2

(
aix∗

i [k]

Ĩi(x∗[k])

) , (21)

where k is used to denote the iteration index of updating θ,
k ∈ Z+, and x∗i [k] denotes the optimal decision of the node
i ∈ N determined at the k-th iteration, which is obtained
by solving the sub-optimization problemM2(θ[k]). x∗[k] is
the column vectors of all the optimal decision variables at
the k-th iteration, i.e., x∗[k] = [x∗1[k], x∗2[k], · · · , x∗N [k]]

T.
Define the parameterized optimal objective ofM2(θ) as

h(θ) = min
x∈Q

{
N∑
i=1

(Cixi +Di)− θ
[
N∑
i=1

ωi log2

(
aixi

Ĩi(x)

)]}
.

(22)
According to Jagannathan’s theorem, we can introduce the
following conclusion:
Theorem 1 (Jagannathan’s theorem [58]). Let x∗ ∈ Q and

θ∗ = θ(x∗). x∗ is an optimal solution for the original
problemM1 if and only if x∗ is optimal for the problem
M2(θ∗).

Define θ[k + 1] and θ[k + 2] by θ[k + 1] = θ(x[k]) and
θ[k+ 2] = θ(x[k+ 1]), respectively. Using Theorem 1 above
and resorting to Dinkelbach’s theorem [59], we further have
the corollaries as follows.
Corollary 1. At the optimal function value of the original

problemM1, θ∗, h(θ∗) = 0 always holds true.

Corollary 2. Given that x[k] ∈ Q and that x[k + 1] solves
M2(θ[k + 1]). If x[k] also solves M2(θ[k + 1]), x[k] is
an feasible optimal solution forM1, and h(θ[k+ 1]) = 0
holds true. Otherwise, it always holds true that θ[k+2] <
θ[k + 1].

Proof: Corollary 1 immediately follows Theorem 1
and can be proven in the similar logic in [59]. In the follow-
ing, we mainly prove Corollary 2. According to Theorem
1 and Corollary 1, x[k] is an optimal solution for M1 and
h(θ[k + 1]) = 0 under the condition that x[k] can solve
the problem M2(θ[k + 1]). When x[k] does not satisfy the
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solution optimality ofM2(θ[k + 1]), there must exist some
points x̃ ∈ Q such that the objective function value of
M2(θ[k + 1]) at x̃ satisfies

N∑
i=1

(Cix̃i +Di)− θ[k + 1]

[
N∑
i=1

ωi log2

(
aix̃i

Ĩi(x̃)

)]
<

N∑
i=1

(Cixi[k] +Di)− θ[k + 1]

[
N∑
i=1

ωi log2

(
aixi[k]

Ĩi(x[k])

)]
= 0.

(23)

Since x[k + 1] solvesM2(θ[k + 1]), we can see

h(θ[k + 1]) =
N∑
i=1

(Cixi[k + 1] +Di)

− θ[k + 1]

[
N∑
i=1

ωi log2

(
aixi[k + 1]

Ĩi(x[k + 1])

)]

≤
N∑
i=1

(Cix̃i +Di)− θ[k + 1]

[
N∑
i=1

ωi log2

(
aix̃i

Ĩi(x̃)

)]
< 0,

(24)

which leads to

θ(x[k + 1]) =

∑N
i=1 (Cixi[k + 1] +Di)∑N
i=1 ωi log2

(
aixi[k+1]

Ĩi(x[k+1])

) < θ[k + 1]. (25)

This indeed is θ[k+2] < θ[k+1]. At this point, the corollary
is proven.

Moreover, let FM2
(x,y) denote the objective function of

M2(θ(x)), i.e.,

FM2
(x,y) =

N∑
i=1

(Ciyi +Di)− θ(x)

[
N∑
i=1

ωi log2

(
aiyi

Ĩi(y)

)]
(26)

where y = [y1, y2, · · · , yN ]
T and y ∈ Q. Obviously,

FM2
(x,y) : Q×Q 7→ R, and this mapping is continuous on

Q×Q. Notice that Q×Q is a closed set, such that the value
domain of FM2

(x,y) is also closed. Based on the continuity
and boundedness of the function FM2

(x,y) with respect to
x and y, we derive the following result:
Theorem 2. Let {x[k]} be a sequence of feasible points

generated by solving a sequence of corresponding
optimization sub-problems {M2(θ[k]),∀k ∈ Z+}, and
limk→+∞ x[k] = p∗ ∈ Q. Such x∗ must be an optimal
solution for the original problemM1.

Proof: According to Corollary 2, it can be seen that

h(θ(x[k])) = FM2(x[k],x[k+ 1]) ≤ FM2(x[k],y) ≤ 0 (27)

for all x[k] ∈ Q and all y ∈ Q. This result indicates that
FM2

(x,y) is bounded on Q × Q. The equality of (27) is
attained when x[k+1] = x[k], i.e., x[k] solvesM2(θ[k+1]).

Furthermore, since θ(x[k + 1]) = θ[k + 2] < θ[k + 1] =
θ(x[k]) and F (x) > 0 for x ∈ Q, we have h(θ(x[k])) ≤
h(θ(x[k + 1])), i.e.,

FM2
(x[k],x[k + 1]) ≤ FM2

(x[k + 1],x[k + 2]) ≤ 0, (28)

which implies that {FM2(x[k],x[k + 1])} is a monotonically
decreasing sequence with respect to k. Therefore, the limit of
FM2(x[k],x[k + 1]) must exist. Specifically, taking the limit
on both sides of (28) can get limk→+∞ FM2(x[k],x[k+1]) =

Algorithm 1: Iterative Fractional Programming
Input: The tolerable maximum number of iterations,

K > 0, and the tolerable error, ε ≥ 0.
Output: An optimal solution and an optimal

objective function value ofM0

/* Initialization */

1 Select x[0] ∈ Q and θ[1] = θ(x[0]). Set k = 0.
/* Now this is a While loop for iterations */

2 while k ≤ K do
/* Solve sub-problem at an iteration */

3 SolveM2(θ[k + 1]) to get an optimal feasible
solution x[k + 1].
/* Update auxiliary parameter */

4 Calculate θ[k + 2] = θ(x[k + 1]).
5 if ‖h(θ[k + 1])‖ ≤ ε then
6 Break and return x[k + 1] and θ[k + 2].

7 else
8 Set k = k + 1.

9 Return p[k] = Faffine (x[k]) and θ[k + 1].

FM2
(x∗,x∗) = 0. Hence, according to Theorem 1, x∗ is an

optimal solution toM1.
Now, based on the above theorems, we can propose

an iterative fractional programming framework based on
solving a series ofM2(θ[k]) as summarized in Algorithm 1.

Remark: Different from the original Dinkeldach’s theo-
retical results, Theorem 2 establishes the global convergence
of the iterative fractional programming, which does not
require the fractional programming problem to be convex.
However, Theorem 2 indicates that the convergence to an
optimal solution to the original problem M1 relies on the
feasibility and solution optimality of solving a sequence of
non-convex sub-problems M2(θ[k]) generated at all itera-
tions k. In the following section, we dive into the subprob-
lem and propose a distributed optimization method with a
convexification transformation to deal with the challenge.

5 CONVEXIFICATION AND DISTRIBUTED OPTI-
MIZATION FOR SUCCESSIVE SUB-PROBLEMS

It has been shown in Section 4 that the applicability of the
iterative fractional programming scheme relies on solving
a globally optimal point of the constrained optimization
sub-problems at all iterations. Thus, how to addressM2(θ)
plays a key role in the iterative fractional programming.
Unfortunately, the objective function of M2(θ) is neither
jointly convex nor jointly concave with respect to the deci-
sions x. It is difficult or even impossible to obtain a globally
optimal solution to M2(θ) by directly applying existing
convex optimization techniques. Hence, we first propose
an algebraic transformation to realize the convexification of
M2(θ) and pave the way for the development of a global
distributed optimization algorithm.

5.1 Exponential Transformation-based Convexification
We introduce an exponential transformation denoted by
φ(x) = exp(x). Obviously, φ(x) is strictly monotonically
increasing and strictly convex with respect to x, and φ(x) ∈
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R++. There must exist a real number si ∈ R such that
φ(si) = aixi, and such an si is unique for an xi, ∀i ∈ N .
Let a column vector s be s = [s1, s2, · · · , sN ]T, and de-
fine φ(s) = [φ(s1), φ(s2), · · · , φ(sN )]T. It can be seen that
φ(s) = Ax. Since each xi is bounded for all i ∈ N , i.e.,
xi ∈ [xi,min, xi,max] where xi,min and xi,max are given in
(15), we also have si ∈ Si , [ln(aixi,min), ln(aixi,max)] for
all i ∈ N . At this point, the feasible region of the bound
constraints on s is defined by S = S1 × S2 × · · · × SN .
Recalling (4), (12) and (13), we rewrite the SINR-based
constraints after the exponential transformation as

ϕi(φ(s)) = log2(α+ 1) + log2

(
Ĩi(φ(s))

φ(si)

)
≤ 0, (29)

where Ĩi(φ(s)) = c0,i + bT
i φ(s), ∀i ∈ N .

Now, treating s as new decision variables, solving the
non-convex modelM2(θ) boils down to solving the follow-
ing model with respect to s.

M3(θ) : min
s

: J(s) =
N∑
i=1

Ciφ(si)

ai

+ θ

[
N∑
i=1

ωi log2

(
Ĩi(φ(s))

φ(si)

)]

s.t.

{
ϕi(φ(s)) ≤ 0, ∀i ∈ N ;

s ∈ S.

(30)

Let R , {s : ϕi(φ(s)) ≤ 0,∀i ∈ N} for notation simplicity.
From the above modelM3(θ), we can derive the following
result, the proof of which is detailed in Appendix 1 of the
online supplemental material.
Theorem 3. Suppose S ∩ R 6= ∅. M3(θ) is a convex con-

strained optimization problem that has a unique globally
optimal solution in S ∩R.

Remark: Theorem 3 shows that the non-convex sub-
problem M2(θ) can be efficiently converted into a convex
model by using the proposed affine transformation and
exponential transformation. This brings into play the convex
optimization methodology for energy-efficiency design.

5.2 Distributed Constrained Optimization
The constrained optimization model M3(θ) is derived
based on the exponential transformation-based convexifica-
tion of the model M2(θ). Ideally, M3(θ) can be efficiently
solved by using some well-known convex optimization
methods like interior point methods from the centralized
computation point of view. However, considering the prac-
tical deployment of a network system, such centralized
computation-based methods may not be effective if each
node cannot fully access the global information on the
whole system. Therefore, we focus on the development
of a distributed optimization algorithm to address M3(θ)
despite the presence of its variable-coupled objective and
constraints. The key idea is to solve a corresponding fixed-
point problem by combining the duality theory and the
variational inequality theory.

First, we introduce a sequence of non-negative La-
grangian multipliers (dual decision variables) λi ∈ R+,
∀i ∈ N , and let the set of these multipliers be a column

vector λ, i.e., λ = [λ1, λ2, · · · , λN ]T ∈ RN+ . For simplicity,
we also re-write ϕi(s) = ϕi(φ(s)) for all i ∈ N , and
introduce ϕ(s) = [ϕ1(s), ϕ2(s), · · · , ϕN (s)]T such that the
nonlinear coupling constraints can be represented as a com-
pact form ϕ(s) ≤ 0. Using these notations, we formulate
the Lagrangian function ofM3(θ) as follows

L(s,λ) , J(s) + λTϕ(s)

=
N∑
i=1

Ciφ(si)

ai
+

N∑
i=1

(θωi + λi) log2

(
Ĩi(φ(s))

φ(si)

)

+ log2(α+ 1)
N∑
i=1

λi,

(31)

and the dual problem ofM3(θ) is proposed as follows

D3(θ) : max
λ

: V (λ) = min
s∈S
L(s,λ)

s.t. λ ∈ RN+ .
(32)

It is noticed that the Lagrangian function L(s,λ) is always
linear with respect to the non-negative dual decision vari-
ables λ. Thus, the dual problem D3(θ) is always convex.

To proceed with analysis, we introduce a weak assump-
tion, i.e., the Slater’s condition on M3(θ), that there exists
a feasible point denoted by s ∈ S such that for all i ∈ N
ϕi(s) < 0. s is also termed an interior point of the feasible
region I , S ∩ R, and I satisfies the Slater’s constraint
qualification. Here, we need to point out that the introduced
assumption does not impair the generality of our method-
ological framework since the model can always be reduced
to the case meeting the Slater’s constraint qualification.
Specifically, if there exist some nodes, denoted by a set
Nactive, such that their coupling interference constraints are
active, i.e., ϕj(s) = 0 for j ∈ Nactive, and the remaining
constraints are inactive, i.e. ϕi(s) < 0 for i ∈ N\Nactive 6= ∅,
we can remove the decision variables of those nodes from
s and their active constraints from I , which does not
change the optimal solution of M3(θ). This is indeed the
basic idea following the active-set method. That is, for each
j ∈ Nactive, according to ϕj(s) = 0 for j ∈ Nactive, we can
see that sj can be expressed as a function of the combination
of the other decision variables {si : i ∈ N\Nactive} as
follows

sj = ln

α
(
c0,j +

∑N
i=1,i6=j bi,jφ(si)

)
1− (α+ 1)bj,j

 , (33)

where bi,j is the i-th element of the column vector bj . (33)
implies that we only need to determine the partial decision
variables associated withN\Nactive and then can obtain the
others associated withNactive by combining the partial deci-
sion variables whose interference constraints are inactive. In
this way, we reduce the previous decision variable s to a new
one s̃ = col{si, i ∈ N\Nactive}. The previous modelM3(θ)
boils down to a lower-dimensional optimization problem
with respect to s̃, which meets the Slater’s condition.

Based on the above Slater’s condition, we have the
following strong duality property forM3(θ) as follows.
Corollary 3 (Strong duality). Suppose thatM3(θ) meets the

Slater’s condition. A dual optimal solution, denoted by
λ∗ ∈ RN+ , exists for the dual problem D3(θ), and the
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optimal objective function value of D3(θ) at λ∗ is the
same as that of the primal problemM3(θ) at its optimal
solution s∗ ∈ I .

Proof: SinceM3(θ) is convex as stated in Theorem 3,
its Slater’s condition is a sufficient condition to make the
strong duality hold.

Let the optimal objective function value of the dual prob-
lem D3(θ) be d∗, and thus we can see J(s∗) = V (λ∗) = d∗.
Besides, since the optimal solutions of the primal and dual
problems, (s∗,λ∗), is always a saddle point of the La-
grangian function L(s,λ), the following inequalities always
hold true for (s,λ) ∈ S × RN+ ,

L(s,λ∗) ≥ L(s∗,λ∗) ≥ L(s∗,λ). (34)

It is also recognized that for some given λ ∈ RN+ ,
OsL(s,λ) = 0 can be treated as a group of linear equa-
tions with respect to φ(si), ∀i ∈ N , where λ are treated
as fixed parameters. Hence, by solving these linear equa-
tions, we can obtain a zero-point solution denoted by
φ̃λ = [φ̃λ,1, φ̃λ,2, · · · , φ̃λ,N ]T such that OsL(ln(φ̃λ),λ) =

0, where ln(φ̃λ) is a component-wise natural logarithmic
function, i.e., ln(φ̃λ) = [ln(φ̃λ,1), ln(φ̃λ,2), · · · , ln(φ̃λ,N )]T.
We further denote u = ln(φ̃λ) ∈ RN , which is indeed
the globally optimal point for the following unconstrained
convex optimization problem

u ∈ argmin
s∈RN

{
Jλ(s) = L(s,λ)

}
. (35)

According to the saddle-point condition (34), we have

L(s,λ∗) = J(s) +
N∑
i=1

λiϕi(s) ≥ L(s∗,λ) ≥ Jλ(u), (36)

which results in

J(s)− Jλ(u) ≥
N∑
i=1

λi (−ϕi(s)) ≥
(

N∑
i=1

λi

)
min
i∈N
{−ϕi(s)}

⇒
J(s)− Jλ(u)

mini∈N {−ϕi(s)}
≥

N∑
i=1

λi

(37)

and

J(s)− Jλ(u) ≥
N∑
i=1

λi (−ϕi(s)) ≥ −λiϕi(s)

⇒
J(s)− Jλ(u)

−ϕi(s)
≥ λi.

(38)

Therefore, we derive a compact convex set U for λ,
which contains the optimal dual solution λ∗

U ,

{
λ : 0 ≤ λi ≤

J(s)− Jλ(u)

−ϕi(s)
,∀i ∈ N

}
. (39)

Define the decision variable pair of s and λ as z =
col{s,λ}. The pair of the optimal primal solution and the
optimal dual solution is represented by z∗ = col{s∗,λ∗}.
The primal-dual gradient-related function G(s,λ) is

G(s,λ) =

[
OsL(s,λ)

−OλL(s,λ)

]
=

OsJ(s) +
N∑
i=1

λiOsϕi(s)

−ϕ(s)

 .
(40)

With (40), the equivalent formulation of the primal and
the dual problems M3(θ) and D3(θ) can be represented in
a variational formulation as follows:

(z− z∗)
T
G(s∗,λ∗) ≥ 0, z ∈ S × U . (41)

According to the theory of variational inequality (see [60]),
the pair of (s∗,λ∗) is an optimal solution for the primal and
the dual problems M3(θ) and D3(θ) if and only if it is a
solution for the variational inequality (41). More specifically,
we can have the following corollary:

Corollary 4. If s∗ and λ∗ solve the following fixed point
problem F3(θ), then z∗ solves the variational inequality
(41) and s∗ and λ∗ are optimal solutions forM3(θ) and
D3(θ), respectively.

F3(θ) :

{
s∗ = ΠS (s∗ − OsL(s∗,λ∗)) ;

λ∗ = ΠU (λ∗ + OλL(s∗,λ∗)) .
(42)

Proof: This corollary can be proven by using the same
logic in Proposition 1.5.8 of Volume I of [60].

It is observed that besides S , the constraint set of λ, U ,
is also a convex box-constraint set. Thus, we can decompose
U as U = U1 × U2 × · · · × UN where Ui = {λ : 0 ≤
λ ≤ (J(s) − Jλ(u))/(−ϕi(s))} for all i ∈ N . This indicates
that the fixed-point equations (42) can be further decom-
posed for motivating a distributed computation, in which
the Euclidean projections are decoupled. To be specific, we
resort to the extra-gradient iterative method to establish an
iterative algorithm for solving the fixed-point equations (42)
in F3(θ) in a distributed fashion as follows
si
[
t+ 1

2

]
= ΠSi (si[t]− γOsiL(si[t],λi[t]))

λi
[
t+ 1

2

]
= ΠUi (λi[t] + δϕi(si[t]))

si[t+ 1] = ΠSi
(
si[t]− γOsiL(si

[
t+ 1

2

]
,λi

[
t+ 1

2

]
)
)

λi[t+ 1] = ΠUi
(
λi
[
t+ 1

2

]
+ δϕi(si

[
t+ 1

2

]
)
)

(43)
for all i ∈ N , where γ > 0 and δ > 0 are the primal and the
dual step-lengths, t ∈ Z+ denotes the iteration index. The
primal and the dual Euclidean projections can be reduced to

ΠSi (x) =


si,min, x < si,min

x, x ∈ Si
si,max, x > si,max

, ∀i ∈ N (44)

and

ΠUi (x) =


0, x < 0

x, x ∈ Ui
J(s)−Jλ(u)
−ϕi(s)

, x >
J(s)−Jλ(u)
−ϕi(s)

, ∀i ∈ N . (45)

The distributed optimization algorithm is given in Algo-
rithm 2. It is remarked that since the extra-gradient method
is used, the extra projection operations are carried out at
each iteration. Even though the extra-gradient iterations
require twice the amount of computations when compared
to a conventional gradient method, it can facilitate solving
the pseudo monotone variational inequalities as in (41).
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Algorithm 2: Extra-gradient-based primal-dual dis-
tributed algorithm for solvingM2(θ)

Input: The tolerable maximum number of iterations,
Ti > 0, i ∈ N , and the tolerable error, ε ≥ 0.
The global energy-efficiency metric
determined at the outer iteration k + 1,
θ[k + 1], and the previous iteration x[k].

Output: An optimal solution ofM2(θ[k + 1]).
/* Initialization */

1 Logarithmically transform s[t] = ln(Ax[k]) ∈ S .
2 Select λ[t] ∈ U .
3 Set θ = θ[k + 1] and t = 0.
/* While loop for iterations by each node */

4 while t ≤ Ti for each i ∈ N do
/* Primal-dual extra-gradient updates */

5 Perform primal-dual extra-gradient updates with
(43) to get new decisions si[t+ 1] and λi[t+ 1].
/* Distributed coordination */

6 Exchange primal-dual decisions with wireless
communications over control channels.

7 if max {‖s[t+ 1]− s[t]‖, ‖λ[t+ 1]− λ[t]‖} ≤ ε
then

8 Exponentially transform
Ax[k + 1] = φ(s[t+ 1]).

9 Break and return x[k + 1].

10 else
11 Set t = t+ 1.

12 Exponentially transform Ax[k + 1] = φ(s[t]).
13 Return x[k + 1].

5.3 Convergence Analysis

It is noticed that the convergence of the iterative algorithm
following (43) depends on the selection of both the non-
negative primal and the non-negative dual step-lengths, γ
and δ. At this point, γ and δ should be properly specified
and sufficiently small such that the algorithmic convergence
can be guaranteed. Therefore, we would like to establish the
convergence condition in this subsection.

For each node i, let Fi(s) and hi(s) denote

Fi(s) =
Ciφ(si)

ai
+ θ

[
N∑
l=1

ωl log2

(
Ĩl(φ(s))

φ(sl)

)]
hi(s) = OsiFi(s)

=
Ciφ(si)

ai
+

N∑
l=1,l 6=i

θωlbi,lφ(si)

(ln 2)Ĩl(φ(s))
− θωi

ln 2

(46)

for all i ∈ N . It is seen that each hi(s) is a continuously
differentiable function with respect to s over S . Besides,
we also let H(s) = OsJ(s) = [h1(s), h2(s), · · · , hN (s)]T,
ϕ(s) = [ϕ1(s), ϕ2(s), · · · , ϕN (s)]T, and Osϕ(s) =
col{Osϕi(s), i ∈ N}. To proceed, we first show the Lips-
chitz continuity of H(s) and Osϕi(s), ∀i ∈ N , and derive
their Lipschitz constants. Based on this, we further deduce
the monotonicity and Lipschitz continuity of the mapping
function G(s,λ) given in (40).

Lemma 1. Let L be L =
√∑N

j=1

∑N
i=1 L

2
j,i and Lj,i be

Lj,i =


Ciµi
ai

+
N∑

l=1,l 6=i

θωlbi,lµi
(ln 2)|c0,l|

, j = i;

N∑
l=1,l 6=i

θωlbi,lbj,lµiµj

(ln 2)c20,l
, j 6= i

(47)

for i, j = 1, 2, · · · , N , where µi = φ(si,max) for i =
1, 2, · · · , N . L is a Lipschitz constant for H(s), i.e.,∥∥∥H(s(1))−H(s(2))

∥∥∥ ≤ L ∥∥∥s(1) − s(2)
∥∥∥ (48)

holds true for any two s(1), s(2) ∈ S .

Lemma 2. Let Li be Li =
√∑N

l1=1

∑N
l2=1 κl1,l2(i) and

κl1,l2(i) be

κl1,l2(i) =


bl1,iµl1

(ln 2)c0,i
+

N∑
k=1,k 6=l1

bl1,ibk,iµl1
µk

(ln 2)c20,i
, l1 = l2

bl1,ibl2,iµl1
µl2

(ln 2)c20,i
, l1 6= l2

(49)
for l1, l2 = 1, 2, · · · , N . Li is a Lipschitz constant for
ϕi(s), i.e.,∥∥∥Osϕi(s

(1))− Osϕi(s
(2))
∥∥∥ ≤ Li ∥∥∥s(1) − s(2)

∥∥∥ , ∀i ∈ N ,
(50)

holds true for any two s(1), s(2) ∈ S .

Lemma 3. G(s,λ) is monotone on S × RN+ and is Lipschitz
continuous on S × U . One Lipschitz constant LG can be
formulated as

LG =
√

(L+ µϕ + µλLϕ)
2

+ µ2
ϕ (51)

where µϕ = maxs∈S {‖Osϕ(s)‖}, µλ = maxλ∈U{‖λ‖},
and Lϕ =

√∑N
i=1 Li.

The proofs of Lemmas 1, 2 and 3 are detailed in Ap-
pendices 2, 3 and 4, respectively, which are available in the
online supplementary material. Based on these lemmas, we
conclude the numerical convergence and the convergence
rate for our distributed primal-dual algorithm using the
extra-gradient mechanism in Algorithm 2 as follows.
Theorem 4. Let the pair of (s∗,λ∗) ∈ S × U be a solution

of the variational inequality (41). If 0 < γ, δ < 1/LG,
the sequence generated by using (43), {(s[t],λ[t])}, can
converge to (s∗,λ∗) at least R-linearly.

Proof: Let the pair of (s∗,λ∗) ∈ S × U be a so-
lution of the variational inequality (41), {(s[t],λ[t])} and
{(s
[
t+ 1

2

]
,λ
[
t+ 1

2

]
)} be the sequences generated by using

(43). Combining Lemmas 1, 2 and 3, and following the same
logic in Lemma 12.1.10 in Volume II of [60], we can see for
all t ∈ Z+ that

‖s[t+ 1]− s∗‖2 ≤ ‖s[t]− s∗‖2

− η(γ)

∥∥∥∥s [t+
1

2

]
− s[t]

∥∥∥∥2

;

‖λ[t+ 1]− λ∗‖2 ≤ ‖λ[t]− λ∗‖2

− η(δ)

∥∥∥∥λ [t+
1

2

]
− λ[t]

∥∥∥∥2

,

(52)

where η(γ) = 1− γ2L2
G and η(δ) = 1− δ2L2

G.
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Fig. 2. The proposed methodological framework.

Since 0 < γ, δ < 1/LG, we have 0 < η(γ), η(δ) < 1, and
thus the generated sequence can guarantee the convergence.
Also according to [60] (See Theorem 12.6.4 in Volume II), the
convergence rate is at least R-linear.

By combining the distributed primal-dual optimization
algorithm, we propose a novel iterative fractional program-
ming framework as illustrated in Fig. 2. In this framework,
we first transform a general non-convex energy-efficiency
optimization problem into another one by using a pro-
posed affine transformation scheme. Then, the fractional
programming model is converted into a sequence of non-
convex subproblems, which are further transformed into a
sequence of convex subproblems by using the exponential
transformation. The global optimum of the convex subprob-
lems generated at each iteration, (s∗,λ∗), are solved by
using a proposed distributed primal-dual algorithm based
on an extra-gradient projection mechanism. The optimal
decision at an iteration k can be obtained by the mapping
operator from (s∗,λ∗) to x∗[k] and the optimal power
control is also yielded by the affine transformation, i.e.,
p∗[k] = Faffine(x∗[k]). Thus, a new parameter θ[k + 1] is
constructed with x∗[k] for the next iteration.

Remark: From Fig. 2, we remark that the computing
burden of each node is low since the whole optimization

problem is solved in a multi-node cooperative manner.
Node N receiving and transmitting data is treated as a
master node or a cluster head in the network. It mainly
operates the steps of the model convexification transforma-
tion, decision variable mapping, and updating parameter θ.
The other transmitting nodes (also including node N itself)
only need to update their local primal and dual decision
variables. The local decision variables are collected by node
N via the common channel and used for updating the
parameter θ. We highlight that these nodes do not need to
solve the original complicated optimization problem. They
only need to execute some parameter mapping or updating
steps. Besides, these nodes 1 to N − 1 do not need to
exchange their local decision variables between themselves.
Therefore, the proposed distributed paradigm also avoids
the congestion in the common channel.

6 PERFORMANCE EVALUATION

In this section, we would like to conduct a series of nu-
merical experiments to validate the effectiveness and the
advantage of the proposed method. The experimental eval-
uation is twofold: (i) demonstrate the convergence of the
proposed method and (ii) compare the global performance
of the proposed method with some other representative
centralized and distributed methods.

6.1 Global Convergence

First, we would like to examine the convergence of the dis-
tributed primal-dual optimization algorithm under different
numbers of nodes. The primal and the dual step sizes are
set to γ = 5× 10−3 and δ = 1× 10−4, respectively, and the
parameter θ of M3(θ) is fixed as θ = 0.01 for the sake of
demonstration. The error tolerance ε is set to ε = 1 × 10−3.
For the sake of methodological demonstration, we take
into consideration a specific physical scenario similar to an
unmanned aerial vehicle (UAV)-oriented wireless ad hoc
network with full-duplex radios and MPR capability con-
sidered in the current literature [3] and adapt the physical-
layer communication settings from the literature to our
simulations here. The lower and the upper bounds of the
power control of each node i ∈ N are set to pi,min = 0 dBm
and pi,max = 40 dBm as used in [3], respectively. According
to the existing works [3], [7], the background noise power
and the self-interference power in a distributed network
are usually much lower and the SINR threshold for each
receiver can range within [1, 10]. Hence, we set the back-
ground noise power as σ2

i = −pi,max = −40 dBm, the SINR
lower bound as α = 5, and the self-interference cancellation
coefficient as ψi = 1 × 10−3. In addition, the weights of
all the nodes, ωi, are identically set to 1, while the channel
gains gi are uniformly generated within [0.01, 0.1]. Here we
remark that the above simulation settings are adopted for
the intercomparison case study and our methodology is not
limited to the application scenario specified in the simula-
tions. Recalling that the proposed methodology explicitly
considers a general SINR formulation, it can be adapted to
distributed EE optimization over a wide range of wireless
networks with full-duplex radios and MPR capability whose
physical layer is characterized by the SINR utility.
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Fig. 3. The global convergence of the proposed distributed primal-
dual algorithm with the extra-gradient mechanism under different node
numbers.

Fig. 3 shows the convergence performance of the pro-
posed distributed algorithm. For comparison, we also ob-
tain the global optimal performance by using a centralized
optimization based on the interior-point algorithm, which
can be treated as the performance benchmark. From Fig. 3,
it can be seen that the objective function J(s) monotonously
decreases along with numerical iterations under different
N , and the proposed distributed algorithm can converge to
the global optimal performance obtained by the centralized
algorithm. The average numerical gap between the steady
performance of the proposed algorithm and that of the cen-
tralized optimization algorithm is only about 3.6561% per
node. Another fact can also be observed that the distributed
algorithm needs more iterations to converge under a larger-
scale network. Nevertheless, due to the distributed imple-
mentation, the convergence of the proposed algorithm is
well guaranteed even when the node numberN is increased
from N = 5 to N = 100.

Next, we fix the node number N at N = 100 and fur-
ther examine the proposed iterative fractional programming
(IFP) combined with the distributed primal-dual optimiza-
tion algorithm. In Fig. 4, we also compare the convergence
performance of the proposed method with the centralized
optimization algorithm. It is illustrated in this figure that
the global energy cost metric θ(x) of the proposed method
can converge consistently to the global optimal level ob-
tained by the centralized algorithm. By comparison, Fig. 4
shows that our proposed method converges faster and it can
arrive at the global optimum by fewer iterations, while the
convergence rate of the centralized algorithm needs more
iterations for convergence. Combining the results from Figs.
3 and 4, it is confirmed that the global convergence of the
proposed method can be well guaranteed and the network
can better benefit from the distributed computation in terms
of convergence efficiency.

6.2 Performance Comparison
In this subsection, we evaluate and discuss the performance
of the proposed IFP algorithm with the distributed primal-

Fig. 4. The global convergence of the proposed iterative fractional pro-
gramming algorithm under N = 100.

dual optimization (Distributed IFP) in terms of the global
energy efficiency. Here, for comparison, we also implement
four typical conventional methods for the power control of
a general wireless ad hoc network, including a distributed
random power control (Distributed RPC) method, a dis-
tributed maximum power-based control (Distributed MPC)
method, a centralized network throughput optimization-
based (Centralized NTO) method, and a centralized energy-
efficiency optimization (Centralized EEO) method without
model convexification. The distributed RPC method drives
the nodes of the network to update their transmission
powers in a random manner, i.e., randomly sampling the in-
dividual powers from the bounded interval [pi,min, pi,max],
which is similar to the random power control proposed
in [61]. The distributed MPC method uses the maximal
transmission powers of the network nodes for data trans-
missions, i.e., fixing the individual node’s power at pi,max =
40 dBm, which is as the same as that in [3]. It is remarked
that the distributed RPC method and the distributed MPC
method are two typical baselines, which have been widely
used for performance comparison in many other studies
such as [2], [62]. In addition, we use the centralized NTO
method and the centralized EEO method as two strong base-
lines that exploit the advanced nonlinear constrained pro-
gramming algorithm, i.e., the sequential quadratic program-
ming (SQP) based on the successive convex approximation
technique [16], [19], to solve the original power optimization
model in this paper. The successive convex approximation-
based method is considered as one of the most efficient
approaches to dealing with nonconvex large-scale optimiza-
tion problems [63] and thus used as the strong benchmark
for performance comparison here. Furthermore, we also
remark that, to investigate the significance of our proposed
model convexification mechanism as well as highlight the
gained benefit from the proposed distributed optimization,
these two competing methods are implemented in a central-
ized manner without integrating our model convexification
in the simulation experiments. In summary, these compared
methods follow either the distributed computation or the



14

Fig. 5. The global energy efficiency of different methods under different
node numbers.

Fig. 6. The global energy efficiency of different methods under different
node numbers and random weight settings.

centralized computation approaches and are representative
for intercomparison simulation study.

We vary the node number N while adopting the same
parameter settings as in Subsection 6.1. To facilitate the
performance comparison between different methods, we
focus the benefit-type energy-efficiency metric, 1

θ(x) , rather
than the cost-type one, θ(x). Fig. 5 compares the global
energy efficiency of different methods under different N . It
is observed that the proposed method and the centralized
EEO method can achieve similar energy efficiency when
the node number is not large, e.g., under N = 5, 10, 20.
Both these two methods can outperform the other three
methods (Distributed RPC, Distributed MPC, and Central-
ized NTO). Nevertheless, when the node number increases,
e.g., N ≥ 50, the global performance of the centralized

EEO rapidly decreases and this centralized optimization
method cannot guarantee the global optimality any longer,
since it cannot find a global optimum and prematurely con-
verges to a local point by directly solving the original non-
convex model M1(θ). By contrast, our proposed method
can achieve the highest performance among these methods
and guarantee global optimality even when the node num-
ber becomes large. Specifically, the EE performance of our
method is about 6.0438× 103 bit/s/Joule more than that of
the other methods on average. The underlying reason is that
our method transforms the non-convex original model to a
convex one by using the proposed convexification and thus
enables the distributed convex optimization to come into
play in solving the global optimization problem.

Moreover, we conduct Monte Carlo simulations to verify
the effectiveness of our proposed method. The weight ωi
assigned for each i ∈ N is randomly generated from the in-
terval (0, 1). All the Monte Carlo simulations have been per-
formed with 100 replications per condition point, and the re-
sults are demonstrated with the average levels and the cor-
responding standard deviation intervals in Fig. 6. From this
figure, we observe that our method can still achieve the best
energy efficiency among these compared methods. When
compared to the two distributed methods, Distributed RPC
and Distributed MPC, and the centralized optimization
method, Centralized NTO, the global energy efficiency
achieved by our method is about 3.3455 × 103 bit/s/Joule
higher on average. This result indicates that our method can
provide the global EE improvement of about three orders
of magnitudes over the baselines. Besides, our proposed
distributed method can also achieve the global energy-
efficiency gain of about 3.2267 × 103 bit/s/Joule, i.e., pro-
viding two orders of magnitudes improvement in the global
EE metric, over that of the centralized EEO method in the
situation with a relatively large node number, i.e., N = 60.
This result shows that the distributed computation with
integrating the proposed model convexification better ben-
efits the global EE optimization over a larger network. The
centralized EEO method, even though it is implemented in a
centralized optimization manner, suffers from the increased
non-convexity and complexity with increasing the network
size and its lack of the convexification transformation makes
it fail in finding a globally optimum, yielding poor perfor-
mance in a ad hoc network situation.

In Fig. 7, we compare the global performance of different
methods under different background noise powers σi. In
this experiment, the node number is fixed at N = 30. From
Fig. 7, the global energy efficiency decreases along with
increasing the noise power. The main reason is that a larger
noise power can reduce the SINR of the communication
links, i.e., making the quality of wireless channels degrade.
Nevertheless, our proposed method still achieves the best
global performance among all the comparative methods.
Specifically, the global energy efficiency of our method
is about 5.042 × 103 bit/s/Joule higher than that of the
distributed RPC, the distributed MPC, and the centralized
NTO methods on average. When compared to the central-
ized EEO method, our method can achieve the average EE
performance gain of about 5.17%.

Fig. 8 shows the global performance of different meth-
ods under different self-interference coefficients ψi. It can
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Fig. 7. The global energy efficiency of different methods under different
levels of background noise power.

Fig. 8. The global energy efficiency of different methods under different
self-interference coefficients.

be seen that increasing the self-interference coefficient can
reduce the global energy efficiency of the network. The
global performance of our proposed method is much greater
than that of the distributed RPC, the distributed MPC, and
the centralized NTO methods, respectively. In particular, the
optimality achieved by our method is also better than that
of the centralized EEO method. The global energy efficiency
of our method increases by about 6.42% on average when
compared to that of the centralized EEO method.

Finally, we compare the performance of different meth-
ods under different SINR lower bounds, i.e., α. From Fig.
9, we can find that a higher SINR bound can lead to a
slight decrease in the performance of our proposed method
and the centralized EEO method. Nonetheless, the global
performance of our method is much better than those of the
distributed RPC, the distributed MPC, and the centralized
NTO methods, and is about 6.20% higher than that of the
centralized EEO method on average. Combining all the
results obtained under different scenarios, i.e., from Figs.

Fig. 9. The global energy efficiency of different methods under different
SINR lower bounds.

5 to 9, it can be confirmed that our proposed method, by us-
ing the convexification transformation, is able to guarantee
better global optimality when compared to the centralized
optimization method without convexification (i.e., the cen-
tralized EEO), and can outperform the conventional meth-
ods in terms of achieving much higher energy efficiency.

7 CONCLUSION

In this paper, we have investigated the global energy-
efficiency optimization problem in general wireless ad
hoc networks with consideration of multi-packet reception
(MPR) capability. We have proposed a convexification trans-
formation to map the complex non-convex problem into
a convex problem and thus developed a novel iterative
fractional programming framework. Based on duality and
variational inequality theories, we have further proposed a
distributed primal-dual optimization algorithm for solving
a series of convex subproblems, which is embedded with
iterative fractional programming. The convergence perfor-
mance of the proposed iterative fractional programming
with the distributed primal-dual optimization has been
theoretically proven and numerically validated. Besides,
experimental results have also shown the effectiveness and
great advantage of the proposed method over the other
conventional power control or optimization methods in
terms of achieving global energy efficiency.

We remark that the proposed model convexification
mechanism joining the affine transformation and the ex-
ponential transformation into Dinkelbach’s method may
facilitate addressing a broad class of non-convex and con-
strained energy-efficiency optimization problems character-
ized by the fractional programming. The methodological
framework presented in this work enables the convex op-
timization theory to come into play and thus may motivate
novel algorithm designs for non-convex and constrained re-
source optimization, such as the SINR-related network util-
ity maximization, of a distributed information communica-
tion system in some other related fields. In future work, we
will focus on the joint optimization of communication and
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computation resources in mobile edge computing-enabled
networks by integrating of the model convexification-based
energy-efficiency optimization and computation offloading
decision-making. We would also like to investigate the
cross-layer optimization, guarantee the max-min energy-
efficiency fairness, and allow for the integration of the pro-
posed distributed optimization model and the spatial link
diversity and channel coding. It is also expected to develop
a prototype of the targeted system and facilitate practical
applications based on the proposed distributed optimization
over wireless networks.
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1 PROOF OF THEOREM 3
It can be seen that

∑N
i=1 Ciφ(si)/ai is jointly convex with

respect to s since ai > 0 and φ(si) is a strictly convex
function of si for all i ∈ N . Recall S is a convex box-
constraint set. To prove the convexity of M3(θ), we only
need to prove that both the second term of its objective
function and the inequality function ϕi(φ(s)) are jointly
convex with respect to s. In fact, for all i ∈ N , it can be
observed that Ĩi(φ(s)) is logarithmically convex, i.e., a log-
convex function, with respect to s. This further indicates
the joint convexity of log2

(
Ĩi(φ(s))/φ(si)

)
with respect to

s. Since the second term of its objective function and the
inequality function ϕi(φ(s)) are a linear combination of
log2

(
Ĩi(φ(s))/φ(si)

)
, respectively, they also meet the joint

convexity.

2 PROOF OF LEMMA 1
For j = 1, 2, . . . , N and j = i, we can have

[OsH(s)]j,i =
Ciφ(si)

ai

+
N∑

l=1,l 6=i

θωlbi,lφ(si)Ĩl(φ(s))− θωlb2i,lφ2(si)
(ln 2)Ĩ2l (φ(s))

.
(S.1)

Notice |c0,i| ≤ Ĩi(φ(s)) for all i ∈ N . We can see∥∥∥[OsH(s)]j,i

∥∥∥ ≤ Lj,i in this case.
For j = 1, 2, . . . , N and j 6= i, we can also see

[OsH(s)]j,i = −
N∑

l=1,l 6=i

θωlbi,lbj,lφ(si)φ(sj)

(ln 2)Ĩ2l (φ(s))
(S.2)

and
∥∥∥[OsH(s)]j,i

∥∥∥ ≤ Lj,i.
In matrix theory, the spectral radius of a matrix is al-

ways not larger than any natural matrix norm. Since L =√∑N
j=1

∑N
i=1 L

2
j,i, the spectral radius of OsH(s), denoted

by ρ(OsH(s)), always satisfies ρ(OsH(s)) ≤ ‖OsH(s)‖ ≤ L.
At this point, the lemma is proven.

3 PROOF OF LEMMA 2

Notice that ∇2
sϕi(s) = ∇2

s log2 ◦Ĩi for all i ∈ N and that for
each i = 1, 2, . . . , N

[
O2
s log2 ◦Ĩi

]
l1,l2

=
bl1,i exp(sl1 )Ĩi(φ(s))−b2l1,i exp(2sl1 )

ln 2(Ĩ2i (φ(s)))
, l1 = l2;

−bl1,ibl2,i exp(sl1+sl2 )

ln 2(Ĩ2i (φ(s)))
, l1 6= l2,

(S.3)

where l1, l2 = 1, 2, . . . , N .
By using the same logic in Lemma 1, we can also prove∥∥∇2
sϕi(s)

∥∥ ≤ κl1,l2(i) for all l1, l2 and i.

4 PROOF OF LEMMA 3

For any two pairs z1 = col{s1,λ1}, z2 = col{s2,λ2}, and
z1, z2 ∈ S × U , we can get based on (40)

(G(z1)−G(z2))T (z1 − z2)

= (OsJ(s1)− OsJ(s2))
T
(s1 − s2)

+
N∑
i=1

(λ1,iOsϕi(s1)− λ2,iOsϕi(s2))
T
(s1 − s2)

−
N∑
i=1

(ϕi(s1)− ϕi(s2)) (λ1,i − λ2,i)

(S.4)

where we let λ1,i and λ2,i denote the i-th components
in λ1 and λ2, respectively. Recalling the convexity of
J(s), the Hessian matrix of J(s), O2

sJ(s), must be posi-
tive definite. Hence, OsJ(s) is monotone. This means that



2

(OsJ(s1)− OsJ(s1))
T
(s1 − s2) ≥ 0. Thus, (S.4) can be re-

arranged as

(G(z1)−G(z2))T (z1 − z2)

≥
N∑
i=1

λ1,i
[
ϕi(s2)− ϕi(s1) + (Osϕi(s1))

T(s1 − s2)
]

+
N∑
i=1

λ2,i
[
ϕi(s1)− ϕi(s2)− (Osϕi(s2))

T(s1 − s2)
]

=
N∑
i=1

λ1,i
2

(s2 − s1)
T(O2

sϕi(ξ1))(s2 − s1)

+
N∑
i=1

λ2,i
2

(s1 − s2)
T(O2

sϕi(ξ2))(s1 − s2)

(S.5)

where the far right term of (S.5) follows the theory of
Taylor’s expansion. ξ1 and ξ2 are two points that can be
expressed as ξ1 = a1s1 + (1 − a1)s2 and ξ2 = a2s1 +
(1 − a2)s2 where a1 and a2 are two some points within
[0, 1]. According to the non-negativity of λ1,i and λ2,i,
and the positive definition of ϕi(s), ∀i ∈ N , we can see
(G(z1)−G(z2))T (z1 − z2) ≥ 0. At this point, the mono-
tonicity of G(z) can be proven.

Next step, we would like to show the Lipschitz con-
tinuity of G(z). According to (S.4) and Cauchy-Schwarz
inequality, we can see

‖G(z1)−G(z2)‖ ≤ ‖OsJ(s1)− OsJ(s2)‖

+

∥∥∥∥∥
N∑
i=1

(λ1,iOsϕi(s1)− λ2,iOsϕi(s2))

∥∥∥∥∥
+ ‖ϕ(s1)−ϕ(s2)‖

(S.6)

We can first get

∥∥∥∥∥
N∑
i=1

(λ1,iOsϕi(s1)− λ2,iOsϕi(s2))

∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥

N∑
i=1

λ1,i (Osϕi(s1)− Osϕi(s2))

+
N∑
i=1

(λ1,i − λ2,i)Osϕi(s2)

∥∥∥∥∥∥∥∥∥∥∥
,

(S.7)

which further leads to∥∥∥∥∥
N∑
i=1

(λ1,iOsϕi(s1)− λ2,iOsϕi(s2))

∥∥∥∥∥
≤

N∑
i=1

λ1,i ‖Osϕi(s1)− Osϕi(s2)‖

+
N∑
i=1

|λ1,i − λ2,i| ‖Osϕi(s2)‖

≤
N∑
i=1

λ1,i ‖Osϕi(s1)− Osϕi(s2)‖+ µϕ‖λ1 − λ2‖.

(S.8)

Fig. 1. The distribution of the measures on the computation time per
iteration of each node using our distributed algorithm.

Using Cauchy-Schwarz inequality and the Lipschitz conti-
nuity of Osϕ(s), i ∈ N , we get

N∑
i=1

λ1,i ‖Osϕi(s1)− Osϕi(s2)‖

≤ ‖λ1‖

√√√√ N∑
i=1

‖Osϕi(s1)− Osϕi(s2)‖2

≤ µλLG‖s1 − s2‖.

(S.9)

Using the mean-value theorem, we also get

‖ϕ(s1)−ϕ(s2)‖ =
∥∥∥(Osϕ(ξ3))

T(s1 − s2)
∥∥∥ ≤ µϕ‖s1 − s2‖

(S.10)

Now, combining (50), (S.8), (S.9), (S.10) with (S.6) can get

‖G(z1)−G(z2)‖
≤ (L+ µλLG + µϕ) ‖s1 − s2‖+ µϕ‖λ1 − λ2‖

≤
√
(L+ µλLG + µϕ)

2
+ µ2

ϕ‖z1 − z2‖,
(S.11)

which concludes the lemma.

5 COMPUTATION TIME OF ALGORITHM

Our distributed EE optimization algorithm is implemented
with MATLAB and run on a single computer with the
specific hardware conditions: Intel(R) Core(TM) i7-8750H
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Fig. 2. The computation time per iteration of each node using our
distributed algorithm.

CPU 2.20GHz-2.21GHz and RAM 8.00 GB.1 To illustrate
the computation time of our algorithm, we have conducted
Monte Carlo simulations. The simulation settings are spec-
ified as the same as those in Subsection 6.1 of the main
text. The Monte Carlo simulations are performed with
100 replications per network size. Note that the network
nodes perform 4000 algorithmic iterations in each Monte
Carlo simulation. We measure the computation time each
node takes for each iteration execution and thus totally
obtain about 4 × 105 = 100 × 4000 samples per node.
In Fig. 1, we show the distribution of the measures on
the computation time per iteration of each node using our
distributed algorithm. From this figure, it is seen that the
computation time per iteration under different network
sizes, N = 5, 10, 20, 40, 80, 100, ranges in the order of tens
of microseconds to hundreds of microseconds. Due to the
existence of random measurement errors in the wall-clock
time of the computer hardware, the collected measures
on the computation time per iteration generally do not
follow a uniform distribution. Thus, we further evaluate the
average results and the corresponding standard deviations
based on the measures. Fig. 2 shows the computation time
per iteration of each node using our proposed algorithm
on average and the error bars indicate the corresponding

1. Here the computing platform is used for the network simulation
purpose. This platform is a multi-task system that undertakes various
software applications besides the simulation experiment. Thus, only
partial computing resources are allocated to the simulation process. Our
proposed optimization algorithm is not limited to the specific platform.
In actual engineering implementation, the computing capacity of the
hardware used to deploy the algorithm program is allowed to be lower
than that used in the simulation experiment. From the perspective
of practical engineering development, we need to choose suitable
computing hardware for the algorithm. This choice will heavily depend
on the deployment scenario of interest. For example, we can use a
computing platform with a 64-bit Cortex-A53 processor for processing
a wide range of complex tasks in power-constrained application sce-
narios, such as vehicle infotainment systems and mobile smart devices
undertaking artificial intelligence and machine learning algorithms.
Besides, the integration design of software and hardware and the code
optimization are significant to improve the execution efficiency of the
optimization algorithm. This issue is out of the scope of this work, and
we consider it an important future direction to extend our study.

standard deviation intervals. From the figure, the average
computation time per algorithm iteration of each node is
about 3.2281× 10−5 s, 4.0401× 10−5 s, and 6.5399× 10−5 s
under N = 5, 10, 20, respectively. By comparison, the metric
is about 1.2568×10−4 s, 3.4956×10−4 s, and 4.8454×10−4 s
under N = 40, 80, 100, respectively.

Moreover, recall that, from Figure 3 in the main text
of the paper, it takes about 500 to 800 iterations to reach
convergence with a good numerical accuracy under the
network size of N = 5, 10, 20. This means that the total
computation time for algorithm convergence per node is
0.0161 s = 500 × 3.2281 × 10−5 s to 0.0523 s = 800 ×
6.5399 × 10−5 s under N = 5, 10, 20, 40. Even when the
number of node is larger, for instance, N = 40, 80, 100,
our algorithm can also converge by about 1000 to 1500
iterations, which takes 0.1257 s = 1000 × 1.2568 × 10−4 s
to 0.7268 s = 1500 × 4.8454 × 10−4 s. Hence we conclude
that the convergence efficiency of the proposed algorithm is
satisfactory to adapt to the potential variation of the model
parameters, and the proposed algorithm is suitable for real-
time computation in reality.2
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2. It is also worth pointing out that in actual one-hop ad hoc net-
works, e.g., cluster-based vehicular networks and unmanned aerial
vehicle (UAV) networks, the network size or the cluster size is usually
limited because the transmission distance and the channel spectrum are
restricted. For instance, the authors consider a UAV network consisting
of only 10 UAVs in [1]. In [2], the average size of a vehicle cluster is
controlled below 5 in a vehicular network. From Fig. 2 above and Fig.
3 in the main text, the average convergence time of our algorithm is
about 30ms which is indeed equal to the duration of only three 5G
frames when the node number is 10. At this point, our algorithm can
be highly efficiently executed, considering an actual networking cluster
in which only several or ten nodes coexist.
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